International Journal of Engineering and Applied Sciences (IJEAS)

ISSN: 2394-3661, Volume-3, Issue-8, August 2016

On The Existence of A Unique Solution for Systems
of Ordinary Differential Equations of First Order

Abdussalam A. Bojeldain, Saif Alislam E. Muhammed

Abstract— In this paper, we state and prove a theorem for
local existence of a unique solution for a system of nonlinear
ordinary differential equations ( NODE ) of first order by
proving that the nonlinear operator of this system is contractive
in a metric space subset of the Banach space consisting of the
bounded differentiable functions on the real numbers and
equipped with a Bielescki's type norm. Finally, we give
examples to illustrate our result.

Index Terms— Banach space of bounded functions
X(t) e C'[ R ), Existence of a unique solution globally, System
of nonlinear ordinary differential equations of first order.

I. INTRODUCTION

In 2015, Bojeldain [1] proved a theorem for the existence of
a unique solution for nonlinear ordinary differential
equations of order m.

In this paper we study the system of nonlinear ordinary
differential equations of first order having the general form:

X(t)=F(e.x(t), 1)
with the initial condition,
¥al=c, (2)
where £ = a is a finite real number, and
;1 (t)
xy(t)
X¥(el)= x5t 3)
L(t)
J:i{a:l Cy
x,(a) €3
X(a) = |x;(a)|=|c2 4
_ri,!{.a:] Cn
f (X0t
f(eX(tD)
Flex(e))= At (5)
ﬁ,_r;r,,:f{t]j

In other form the system is

HEIESICEADEACIEZCIEIENES)

Abdussalam A. Bojeldain, Department of Mathematics, Omar
Al-Mukhtar University, El-Beida, Libya, 00218 7464804.
Saif Alislam E. Muhammed, Department of Mathematics,

Omar Al-Mukhtar University, EI-Beida, Libya, 00218 927556629.

32

fori =123, ».n.
Since the system of (NODE) (1) with the initial condition
(2) is equivalent to the integral equation;

X(t)=C+ [, F(=X(z))ds @)
we denote the right hand side (r.h.s.) of (7) by the nonlinear
operator @{ X J£; then prove that this operator is contractive
in a metric space E subset of the Banach space B of the class
of bounded functions X( ¢ J € C"( & Jdefined by:

B={(t.X(t N lt—al <oo|x;(t)-¢ | T <00, i=

12,3, -, n}
8
and equipped with the weighted norm:
— _rle — LI P
Xl = |€’1‘ﬂ§x{ exp(—Llt —al) EL lx;( £ 9)
which is known as Bielescki's type norm [2],
L=max(l.1) is a finite real number where

I = max(1; ). I; is the Lipschitz coefficient of £ . X(t))
fori=1,2.3,.n in B1 ( a subset of the Banach space E
given by (8)) defined by:

Bl1={(t x, (), Ct ) xa () x (e It —al =
Tx;(t)—gl =T =T}

(10)
where
Tand T; fori = 1.2,....n are finite real numbers.

When the function F inthe r.h.s of (1) depends linearly on
its arguments except £, then equation (1) is a 1 order
system of linear ordinary differential equations and to prove
the existence of a unique solution foritin[e—T.a +T]
one usually prove that component wise in a neighbourhood
Nz(a)fort € [a.a+ 4], then mimic the same steps of the
proof for £t € [ @ — &.a ]; after that use another theorem to
show whether the solution do exist for all
tEe[a—T.a+T]ornot as in [3]. By the theorem which
we are going to state and prove in this paper one can easily
prove the existence of a unique solution for 1% order
nonlinear systems of ordinary differential equations on the
general form (1) forall t € [& — &, & + & ] directly in a very
simple  metric space E consisting of the functions
X(t)eC'[a—T.a+T], subset of the Banach space (8)
[4], and equipped with the simple efficient norm (9) for
It —al = &, moreover if the Lipschitz condition (11) is
guaranteed to be satisfied in the Banach space (8), then the
theorem guarantees the existence of a unique solution for
It —al = @ in most cases and not in general as mentioned in

[5].
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Note that this theorem is valid for 1% order linear systems
of ordinary differential equations as well.

1. MAIN THEOREM

Now, we are in a position to state and prove our main
theorem.
Theorem: Consider the system of ( NODE ) (1) with the
initial condition (2) and suppose that the function F in the
r.hs. of (1) is continuous and satisfies the Lipschitz
condition:

IF(e.xCe))-Fle.v(e))| = tlx(e)-v(e)l =

= 120 |x; — ¥ (12)
in E1 given by (10); then the initial value problem (1) and (2)
has a unique solution in the (n + 1} dimensional metric
space E (of the functions X{t 1 e C'[a—d.a+ 5 ])cE
defined by:

E={(tx,(t) x,(t) x, (&), . 2, N |t — | =
G lxi(e) — el =71
_ (12)
such that & = min [ T,%j; where T* = minl{ T; ],
M= max( M), and |f (. X(t) = M, fori=
1,23, ninE1

Proof: Integrating both sides of (1) from a to t and using the
initial condition(2), we obtain the system of integral
equations(7).

To form a fixed point problem X ()} = QX )t denote the
r.h.s. of (7) by @QUxJ¢, and to apply the contraction mapping
theorem we first show that J: E — E; then prove that @ is
contractive in E.

We see that:

Qe —cl = [[F(xX(x))dx| <
< [JE(nx())dr =
< [[Mdr=Mt—al sME=MT =T (43
hich means that @: £ —= E.

Next we prove that @ is contractive, to do so we consider
the difference:

QX e — Qe = 19 () — QW) =
Jﬂ:(F{T,X{T:]}—F{T,F{T:]}:I dt | =

< [JF(2x(2)) = F(2.¥())|de
which according to Lipschitz condition (11) yields:

(14)

t
000 — QW)@ < a[ X(e) —¥()ldr <
< LI EE lxi(r) —yi(7)lde (15)

Multiplying the most r. h. s. of (15) by
exp(—Llt — al Jexp(Llr — all. we get

lQ(x) — QVIG) =
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L fcr (Fr, |x;(e)-9%(7)| expl=Llr—al )} ) exp(Llz -
ﬂ-l:] dTE LJ’: |E%i‘{ ngp{_z-lf - ﬂ-l :] EF=1 |x[{1.':| —
yi(7)] Jexplllt —al) dr

(16)
which is (‘according to (9) ),
00) - QI = L ¥l [ explile —al) ar =
= X —¥ll(exp (LIt — al} — 1) @
ie.,
10(X) — QW) = X — ¥l Cexp (LIt — al) — 1)
(18)

Multiplying both sides of (18) by exp{—Llt — al } leads to:

exp(—Llt —al NQLX) — QW) = X —¥I -
(1—expl=Llt—al)) = X —¥I(1 - exp(—L5))
(19)
The most r. h. s. of (19) is independent of £, thus it isan
upper bound for its 1. h. s. for any |t — al = &; whence:

max (exp(~Llt —al QX)) — Q)I(2)) =

< Ix =¥l - exp(—L& D) (20)
which, according to the norm definition (9), gives:
1Qx) — @Il = (1 —exp(—LaNIX —¥I (21

Since 0 < (1 —exp(—L6)) = 1;then Q(X)t isa
contraction operator in E and has a unique solution for
te ﬂfa{ o :]

I1l. EXAMPLS

In this section, we give two examples illustrate the above
obtained result.
Example 3.1 We selected the exact solutions:

x1() =t?
x(E) =e* |, (22)
x3(E)=t+4

and constructed the following system of nonlinear ordinary
differential equations:
} (23)

(24)

() =26 — x4+ 2¢%x, — ¢4
x5(t) = 26" —x,
xolt) = —x3+ 2x ¢4+ 8x, — 7 — 8t — 15

If we a= 0in (22), we get
(0 =0
x3(0) = 1¢,
x3(0) =4

as the initial conditions to (23).

Selecting positive finite real numbers Ty, T;, and T; we find
that |x; — ;| = T leads to |x, (&) = Ty =, (e} = T + 1.
() =Ty + 4

The subset E1is;
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{tx (hx, Nt —al =T Ix, (D) =T, Ix, | =T, +
Llxge)l =Tm +4}

(25)
In E1 we have:

15 (£, (0, x, (. x, )| = 126 — x2 4 2¢%x, — %] =

< 2T+ T2 + 2T T2 + T4,

A (o, () e, () o)) = 1287 — x5 | 26T+ T4 +1,
and

JAEACEROEAO)E

=|—xi +2x,t+8x,—t? -8t — 15| =

= (L +4MT+2T +12) +T(T +8) + 15

e M, =2T+ T2+ 2T T2 +T* M, = 2" + T, + 1,
and My = (T, +4)(T, + 2T +12) + T(T +8) + 15
Next, we check the Lipschitz condition for f. f;. and f:

f X)) — AEY(EN = |- + 2¢%x, +y7 — 2ty | =
= 2{1"1_ + T::]{l-r]_ _J-"j_l + |J.': — ¥ | + |-rg — ¥a |:]

(26)
therefore f; satisfies the Lipschitz condition (11) in E1 given
by (25) with Lipschitz coefficient I, = 2(T, + T*),

£Ex@) - £EYE)] = 126F —x;— 26" -yl <
d_:|.r,_—_‘}-‘,_|+|_r:—j,-‘:|+|.r!—}-‘!|, 27
i.e. fz satisfies the Lipschitz condition (11) in E1 given by
(25) with Lipschitz coefficient I; = 1,

and

6(tx®) - £(ty®)| =
= |—.r§ + 2xgt 4 Bxy -I—}-'!: — 2yt — 8By | =
= 2{8 + Tg + T:]{l-rl_}’j_l + |J.': — ¥ | + |-rg — ¥a |:], (28)
whence f; satisfies the Lipschitz condition (11) in E1 given
by (25) with Lipschitz coefficient [; = 2(8 + Ty + TJ.
Therefore L = max(2(T, + T2),1,2(8 + T, + T)).
Putting M = max(M,, M,.M;) = k,Tand T™ =
= min(T,. Ty Tu) = k, T such that the k;. k are positive
real numbers, we find that the unique solution exists in the
interval |t — al = & where,
T, if by = &y
6= {—‘r ik, = Ky
Example 3.2 [5] As a second example, consider the
following system of nonlinear ordinary differential
equations:

i+t cosx, +x, =0 }
x;+sinx, =10 ' (29)
having the initial conditions:
x;(a) =10 }
@ =17 (30)

Selecting positive finite real numbers T;. T; we find that
lx; — ;] < Tileadsto lx, (&) = Ty, lx, (0l = Tw 4+ 1.
The subset E1 is:

{(tx, W, Nt —al =T |x, @ =T, Ix, @ =T2 +
1}

(1)
in which,
I (£, %, 8, x,(0)| = |-£2 cosx, — x,] = t*(lcos x, [} +
Hel=T+a) +T3 +1

34
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and |5 Ct x, (&) x ()] = |- sinx, | = 1,
ie. M, =(T+a)P +T; +1, M, = 1. Hence M = max(
M, M,)=(T+a)Y+T; +1,

Next, we check the Lipschitz condition for f; and f :

IE(Lx) - £(e¥®)] =

=|-tlcosx, —x, 4+ tfcosy + .l <
< t¥eosxy, —eosyy | +lx, —yl =

< 2T + a)(lxy — v | + |2, — 3 ), (32)
and
ﬁ;{t,}f{ﬂ}—fz {t,lr’(ﬂ}l = |—sinx, +siny | =
= |-r;|_—_'}’j_|E{lxl_}’ll‘l‘lx:_}’: |:] (33)

therefore fi and f; satisfie the Lipschitz condition (11) in
B1 given by (31) with Lipschitz coefficient [, = 2(T + a)*
and =1 respectively.
Hence L = max(l,1) = 2(T + a)*.

Putting M = &k, T, T" =& T such that the k;.k; are
positive real numbers, we find that the unique solution exists
in the interval |t — al = & where,

T, ifky=k
=K
il i
ks
IV. CONCLUSION
We see that the contraction coefficient

0 < (1—exp(—L51) <1 for any finite & = 0. Moreover,
in most cases, if the function F in the r.h.s. of (1) is
continuous and satisfies Lipschitz condition in the Banach
space (8) with finite positive Lipschitz coefficient, then the
theorem is proved for t in any interval I of finite length
because the contraction
coefficient (1 — exp (—Lu(I))) will be positive and less
than 1; where u{ ! } is the measure of the interval 1.
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